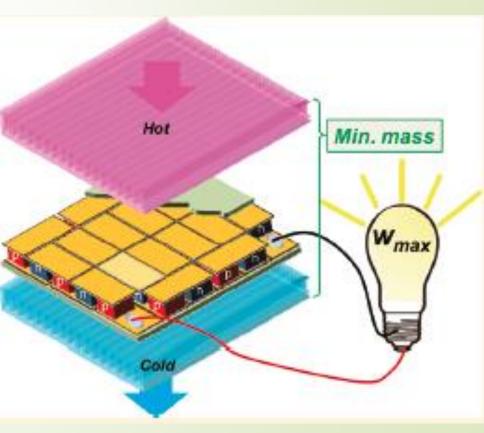
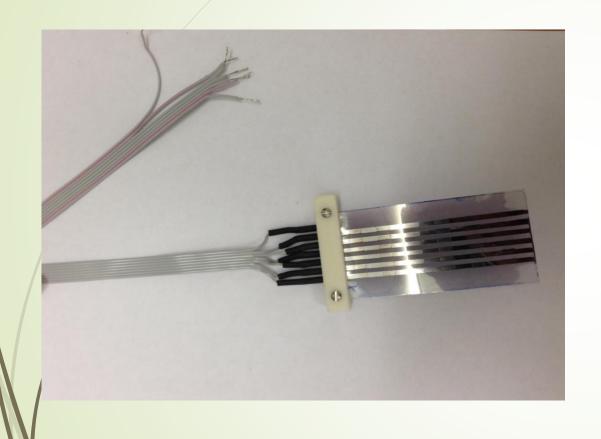

Solar Cell and Thermoelectric Technologies

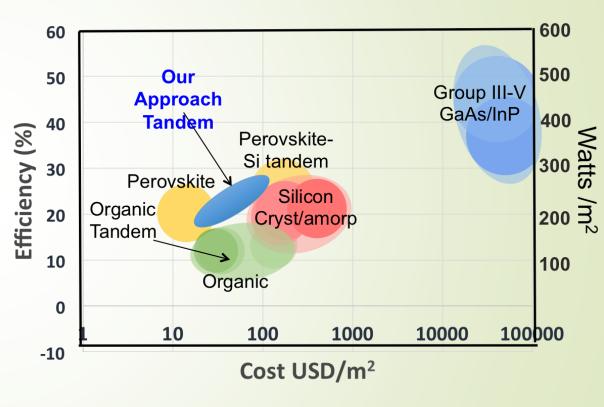


Hemali Rathnayake, Associate Professor Nanoscience Department Harvesting solar energy to electricity Solar Cells

Harvesting waste heat to electricity –

Thermoelectric Generators

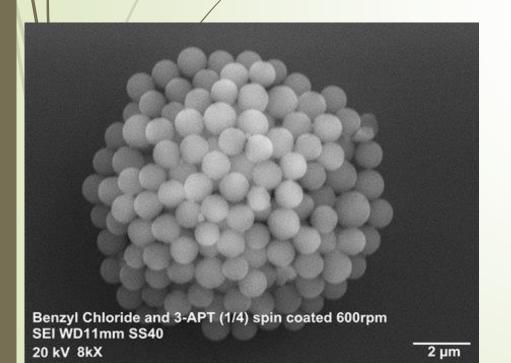




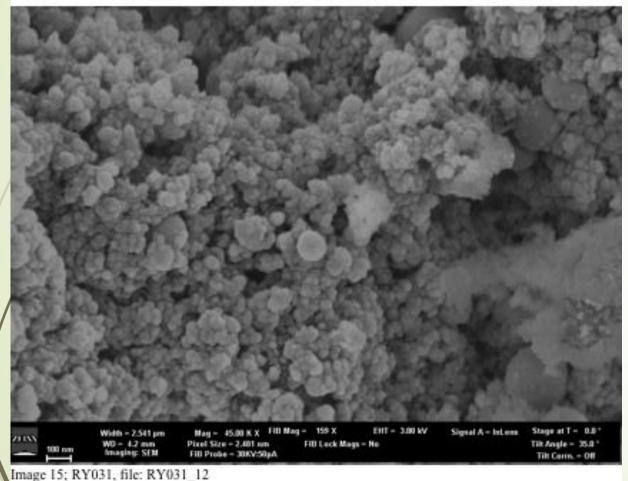
A Cost Comparison of Competing Power Generation Technologies

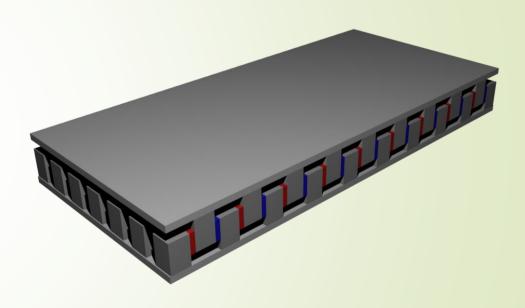
Application Temperature	Power Generation Technology	System Cost (\$/W)
Low (T _h ≈ 100 °C)	Geothermal	\$4.14
	Half-Heusler Thermoelectric (Bulk Zr _{0.25} Hf _{0.25} Ti _{0.5} NiSn _{0.994} Sb _{0.006)}	\$125.05
	Silicon Nanowire Thermoelectric	\$104.18
	Chalcogenide Thermoelectric (Nanobulk Bi _{0.52} Sb _{1.48} Te ₃)	\$62.44
Medium (T _h ≈ 250 °C)	Organic Rankine Cycle	\$4.00
	Concentrating Solar Power	\$3.60
	PV Target	\$1.00
	Skutterudite Thermoelectric (Bulk Yb _{0.2} ln _{0.2} Co ₄ Sb ₁₂)	\$19.02
	Half-Heusler Thermoelectric (Bulk Zro.25Hfo.25Tio.5NiSno.994Sbo.006)	\$14.45
	Chalcogenide Thermoelectric (Nanobulk Bi _{0.52} Sb _{1.48} Te ₃)	\$11.92
High (T _h ≈ 500 °C)	Nuclear	5.34
	Coal	\$2.84
	Natural Gas	\$0.98
	Silicide Thermoelectric (Bulk Mg ₂ Si _{0.6} Sn _{0.4})	\$5.56
	Chalcogenide Thermoelectric (Bulk AgPb ₁₈ SbTe ₂₀)	\$5.06
	Half-Heusler Thermoelectric (Bulk Zr _{0.25} Hf _{0.25} Ti _{0.5} NiSn _{0.994} Sb _{0.006)}	\$4.48

Solar Cells – Current Technology Development Stage



Space Technologies - Space Solar Power


Juno's MJ III-V cell solar panels convert up to 28% of sunlight into power. Future space exploration missions will require lighter, flexible, less expensive, and more efficient solar panels to operate in LILT conditions.


Experiments on the ISS - ACE-H2 Begins Flight Operations - 01/2015

Thermoelectric Generators - Current **Technology Development Stage**

Acknowledgment

Funding Support:

KY-NASA EPSCoR (Award # - NNX14AN2BA)

NSF-CHE-MRI (Award ID - 1338072)

NSF-MRI (Award ID - 1429563)

